拉普拉斯(Laplace)变换是分析和求解常系数线性微分方程的一种简便的方法,而且在自动控制系统的分析和综合中也起着重要的作用。
本文是学习完Laplace变换后的一些总结和归纳。
定义$\mathcal{L}[f(t)]=\int_{0}^{+\infty} f(t)e^{-st} dt = F(s)$
例1:$\mathcal{L}[e^{at}] = \frac {1}{s-a}$
$F(s)=\mathcal{L}[f(t)] = \int_0^{+\infty} e^{at}e^{-st} dt = \int_0^{+\infty} e^{-(s-a)t} dt = -\frac {1}{s-a}e^{-(s-a)t}|_0^{+\infty} = \frac {1}{s-a}$
例2:$\mathcal{L}[\cos{at}] = \frac {s}{s^2+a^2}$
$\because \cos {at} = \frac {1}{2}(e^{iat}+e^{-iat})$
$
\begin{eqnarray}
F(s) & = & \mathcal{L}[f(t)] = \int_0^{+\infty} \frac {1}{2}(e^{iat}+e^{-iat})e^{-st} dt \
& = & \frac{1}{2} \int_0^{+\infty} e^{-(s-ai)t} dt + \int_0^{+\infty} e^{-(s+ai)t} dt) \
& = & \frac{1}{2} (\frac {1}{s-ai} + \frac {1}{s+ai}) = \frac {s}{s^2+a^2}
\end{eqnarray}
$
例3:$\mathcal{L}[\sin{at}] = \frac {s}{s^2+a^2}$
$\because \sin {at} = \frac {1}{2i}(e^{iat}-e^{-iat})$
$
\begin{eqnarray}
F(s) & = & \mathcal{L}[f(t)] = \int_0^{+\infty} \frac {1}{2i}(e^{iat}-e^{-iat})e^{-st} dt \
& = & \frac{1}{2i} \int_0^{+\infty} e^{-(s-ai)t} dt - \int_0^{+\infty} e^{-(s+ai)t} dt) \
& = & \frac{1}{2i} (\frac {1}{s-ai} - \frac {1}{s+ai}) = \frac {a}{s^2+a^2}
\end{eqnarray}
$
Laplace变换简表
$f(t)$ | $\mathcal{L}[f(t)]$ |
---|---|
$\delta(t)$ | 1 |
1 | $\frac{1}{s}$ |
$t$ | $\frac{1}{s^2}$ |
$t^n$ | $\frac{n!}{s^{n+1}}$ |
$e^a$ | $\frac{1}{s-a}$ |
$\cos at$/$\sin at$ | $\frac{s}{s^2+a^2}$/$\frac{a}{s^2+a^2}$ |
$\cosh at$/$\sinh at$ | $\frac{s}{s^2-a^2}$/$\frac{a}{s^2-a^2}$ |
$t\cos at$/$t\sin at$ | $\frac{s^2-a^2}{(s^2+a^2)}$/$\frac{2as}{(s^2+a^2)^2}$ |
$t\cosh at$/$t\sinh at$ | $\frac{s^2+a^2}{(s^2-a^2)^2}$/$\frac{2as}{(s^2-a^2)^2}$ |
Lapace常用性质
性质 | 表达式 |
---|---|
线性性质 | 齐次性 |
线性性质 | 叠加性 |
微分性质 | $\mathcal{L}\left[ f^{\left( n \right)}\left( t \right) \right] =s^nF\left( s \right) -\sum_{i+j=n}^{}{s^if^{\left( j \right)}\left( 0 \right)}$ |
$\mathcal{L}\left[ f’\left( t \right) \right] =sF\left( s \right) -f’\left( 0 \right)$ | |
积分性质 | $\mathcal{L}\left[ \int{f\left( t \right) dt} \right] =\frac{F\left( s \right)}{s}$ |
位移性质 | $\mathcal{L}\left[ e^{at}f\left( t \right) \right] =F\left( s-a \right)$ |
延迟性质 | $\mathcal{L}\left[ u\left( t-a \right) f\left( t-a \right) \right] =e^{-as}F\left( s \right) $ |
终值/初值定理 | $\underset{t\rightarrow 0}{\lim}f\left( t \right) =\underset{s\rightarrow \infty}{\lim}sF\left( s \right) / \underset{t\rightarrow 0}{\lim}f\left( t \right) =\underset{s\rightarrow \infty}{\lim}sF\left( s \right)$ |
卷积定理 | $\mathcal{L}\left[ \int_0^t{f_1\left( t-\tau \right) f_2\left( \tau \right) dt} \right] =F_1\left( s \right) F_2\left( s \right)$ |
Laplace逆变换的技巧
一般而言Laplace$可以化为形如$$
F\left( s \right) =\frac{B\left( s \right)}{A\left( s \right)}=\frac{b_ms^m+b_{m-1}s^{m-1}+\cdots +b_1+b_0}{a_ns^n+a_{n-1}s^{n-1}+\cdots +a_1+a_0}
$的形式,而可以用因式分裂化为单个有理真分式。
当$A(s)=0$无重根时
$F\left( s \right) =\frac{B\left( s \right)}{\left( s-s_1 \right) \left( s-s_2 \right) \cdots \left( s-s_n \right)}$,可以化为$A\left( s \right) =\frac{c_i}{s-s_i}$,其中$c_i=\underset{s\rightarrow s_i}{\lim}\left( s-s_i \right) F\left( s \right) $
当$A(s)=0$有重根时
$F\left( s \right) =\frac{B\left( s \right)}{\left( s-s_1 \right) ^r\left( s-s_2 \right) \cdots \left( s-s_n \right)}$,非重根同上,重根部分求导
$c_1=\underset{s\rightarrow s_i}{\lim}\left( s-s_i \right)^r F\left( s \right) $
$c_n=\frac{1}{\left( n-1 \right) !}\underset{s\rightarrow s_i}{\lim}\frac{\text{d}^n}{\text{d}x^n}\left[ \left( s-s_i \right) F\left( s \right) \right] $
从而可以进行逆变换
例:$F\left( s \right) =\frac{1}{\left( s-2 \right) \left( s-1 \right) ^2}$
$$
\begin{eqnarray}
& c_1 & =\underset{s\rightarrow 2}{\lim}\left( s-2 \right) F\left( s \right) =\frac{1}{\left( 2-1 \right) ^2}=1
\
& c_2 & =\underset{s\rightarrow 1}{\lim}\left( s-1 \right) ^2F\left( s \right) =\frac{1}{1-2}=-1
\
& c_3 & =\underset{s\rightarrow 1}{\lim}\frac{\text{d}}{\text{d}x}\left( s-1 \right) ^2F\left( s \right) =-\frac{1}{\left( 1-2 \right) ^2}=-1
\
& F &\left( s \right) =\frac{1}{\left( s-2 \right) \left( s-1 \right) ^2}=\frac{1}{s-2}-\frac{1}{\left( s-1 \right) ^2}+\frac{1}{s-1}
\end{eqnarray}
$$